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Outline of the tutorial

Introduction to energy-related time series forecasting

ML and DL architectures for forecasting

Tuning of DL models for forecasting

Evaluation of forecasting results

Reproducibility of forecasting results

Hands-on coding examples
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About me - Giuseppe La Tona

eResearcherwith the Institute for Marine Engineering (INM) - Palermo branch, CNR
*Ph.D. in Computer Engineering from the University of Palermo
eSenior Member, IEEE
eResearch focus: machine learning and optimization for energy systems
eMain topics:
eEnergy management systems (EMSs)
eForecasting of energy-related time series
*Optimization-based control for microgrids and renewable integration

eContact info:
eEmail: giuseppe.latona@cnr.it
*\Website: www.giuseppelatona.com
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Forecasting: a Key Enabler of the Energy Transition

*The integration of renewable energy sources is
accelerating the transition toward low-carbon energy
systems.

eThis shiftincreases variability, uncertainty,
and operational complexity.

eAccurate forecasting of renewable generation and
electrical load is essential to:

eMaintain grid stability and reliability

eEnable smart operation of energy communities and
microgrids

eSupport planning and energy trading

eForecasts feed Energy Management Systems
(EMSs) that coordinate renewable sources, storage, and
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Forecasting for Different Scales and Objectives

* Transmission and Distribution Operators:

* Aggregate short-/medium-term forecasts for scheduling, unit
commitment, and trading.

* Microgrids and Buildings:
* Short-term load and PV forecasting for day-ahead scheduling and real-
time control.

* Emerging paradigms:

* Energy Communities and Smart Buildings rely on EMSs integrating local
generation, storage, and flexible demand.
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From forecasting needs to forecasting
practice

* The growing interest in machine learning and deep learning has brought
remarkable advances in forecasting accuracy.

* However, challenges remain:
* [nconsistent or inappropriate evaluation metrics
* Data leakage and methodological errors in validation
* Limited reproducibility of published results due to unavailable code or data

* These issues hinder both scientific progress and industrial adoption.

* This tutorial aims to share good practices, evaluation frameworks, and
reproducible workflows for energy-related forecasting.
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Whatis a time series?

* Atime series is a set of data points
indexed by time, typically sampled at
regular intervals.

* [t can be modeled as a stochastic
process, i.e., a sequence of random
variables
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What is forecasting?

* Forecasting aims to predict the value of the variable y, given its
past observations:

yt+1 — f(yt! ""yl)

* Often, we want to predict several future steps — a forecasting
horizon of length h

(j;t+1' "'Jj;t+h) — f(ytJ ""yl)
* The function fis unknown and it must be learned from data

)
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Univariate and Multivariate Time Series

* Univariate: each time step is a scalar y,
* Example: total power consumption

* Multivariate: each time step is a vector y,
* Example: consumption, PV generation, and temperature jointly

* Multivariate models can capture inter-variable dependencies.
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Role of exogenous variables

* Exogenous variables (also called explanatory
variables, or covariates) provide additional
information influencing the target time series.

* Types of exogenous variables:

* Past exogenous variables: known up totimet (e.g., past forecasting
past temperature, prices) observations horizon

* Future exogenous variables: known over the
forecast horizont + 1, ...,t + h (e.g., calendar | I |
features, scheduled tariffs, weather forecasts)

» Static exogenous variables: variablesthat are . .
static throughout the entire forecast horizon, e.g., time series Y . . . . . . . . . .
building type, geographic location, or installed past exogenous x . . . . . .

capacity

* |Including exogenous inputs often improves
model accuracy and robustness

* Modeling static covariates has become
common with deep learning forecasting
architectures

future exogenous 7z . . . . . . . . . .
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General forecasting model

In general, a forecasting model approximates the relationship between future values
of the target series and all relevant inputs:

(yt+1' ""yt+h) — f(zt+hJ v Lt 1 Yt 0 Y Xy -0 X1, S)
y target time series
xpast exogenous variables (time-varying)
zfuture exogenous variables (time-varying, known over the forecast horizon)
s static covariates (covariates that are static throughout the entire forecast horizon)
* fthe unknown function learned from data

Modern deep learning architectures learn flexible approximations of fdirectly from
raw or minimally processed data.
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Single-step and multi-step forecasting

* Single-step forecasting:
Predict only the next value of the time series

* Multi-step forecasting:
Predict several future values

* Multi-step forecasts can be obtained by:

* Recursive strategy: feed each prediction back as input
* Direct strategy: train separate models for each horizon
* Multi-output strategy: predict all future steps jointly
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Forecasting horizons

Horizon Typical Range Applications

. . Operation, dispatch,
* Horizon selection depends on. Short-term Minutes > days demand response,

. control
* Temporal resolution (e.g., hourly, "
. alntenance,
dally) Medium-term Weeks > months resource planning,
* System dynamics and decision tariff design
timescale Investment

planning, capacity
expansion, policy
studies

Long-term Months > years
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Day-ahead forecasting

* A special case of short-term multi-step forecasting

* Forecasts the next 24 hours, typically with hourly or sub-hourly
resolution

* Widely used in energy applications for:
* Scheduling and dispatch of generation and storage
* Energy trading in day-ahead markets
* Demand response planning

* Often includes exogenous inputs such as weather forecasts and
calendar effects

IEEE
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General forecasting pipeline

deployment &
monitoring

Mg
evaluation !
tuning
<—
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Data preprocessing

Typical preprocessing steps for energy-related time series:

* Data cleaning: handle missing values, outliers, and sensor errors
* Resampling: alignh data to a consistent temporal resolution

* Normalization / scaling: improve model convergence

* Detrending / deseasonalization: optional, depends on model type

* Feature engineering: create time-based features (hour, weekday), lags, rolling
stats

* Documentation: record preprocessing decisions for reproducibility

Claood preprocessing ensures data quality, model stability, and reproducible
results.
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Summary and outlook

* We discussed the motivation: the energy transition increases
variability and uncertainty, making forecasting essential for stable and
efficient operation

* Defined time series, forecasting, and exogenous variables
* Introduced forecasting strategies (single- vs. multi-step) and horizons
* Outlined the forecasting workflow and data preprocessing steps

* Next: How to model forecasting functions f using ML and DL
architectures
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Reproducibility
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Why talk about reproducibility?

* Reproducibility is the foundation of scientific credibility

* Increases trust, transparency, and reliability of research

* Enables verification, comparison, and re-use of methods

* Critical for bridging academic results and industrial adoption

* In ML and forecasting, reproducibility ensures models can be
replicated, validated, and improved
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Terminology

: - 4 p
* Replicability: -

* Independent researchers obtain eneralization
consistent results using new data and the 9 y
same methods - X S

* Reproducibility: : -

* Independent researchers obtain the Fepliealoillisy
same results using the same data and _ ' y,
methods - R

* Reproducibility is a necessary Reproducibility
condition for replicability . )
* Without reproducibility, replication — \
and thus scientific progress —is
impossible

delle Ricerche
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The broader reproducibility crisis

* Many scientific disciplines report low replication success rates

e Common issues:

* Incomplete or ambiguous method descriptions

* Data and code not shared

* Hidden assumptions or software bugs

* Randomness and uncontrolled computation environments

 Consequences:

* Erosion of trust in published results
* Difficulty building on prior work
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Reproducibility in forecasting research

* Forecasting studies often lack complete methodological transparency
* |Insufficient detail in data preprocessing and parameter settings

* Proprietary software or undocumented algorithms
* Results that depend on specific datasets or random initializations

* Even when data are public, methods are rarely reproducible without
direct author communication

* Reproducibility is essential for:
* Fairmodelcomparison
* Reliable performance benchmarking
 Cumulative progress in forecasting research
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Reproducibility in Machine Learning

* ML experiments are computational, yet reproducibility remains a major
challenge

* Frequent causes:
 Under-specified model and training details
 Uncontrolled randomness (initialization, sampling, parallelism)
* Inconsistent metric definitions
* Selective reporting of best results
* Software version differences

* Reproducibility is not only about sharing code, but also sharing context
and documentation
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Reproducibility in ML-based forecasting

* Forecasting introduces additional temporal and methodological
complexities:

* Risk of data leakage (future data influencing training)
* Dependence on preprocessing pipelines

* Multiple forecast horizons and error metrics

* Use of stochastic deep learning models

* Reliable forecasting research requires:
* Transparent workflows
* Controlled randomness
* Reproducible data splits and evaluation procedures
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Sources of reproducibility failures

Reproducibility failures can occur at every stage of the forecasting

workflow:

1. Data

2. Preprocessing

3. Modeldesign & training
4. Evaluation

5. Reporting & dissemination
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Data-related failures

Common problems:
* Unavailable or restricted data (privacy, licensing, proprietary datasets)

* Ambiguous data descriptions: unclear time ranges, units, or missing
variables

* Data leakage: future information inadvertently used during training
* Uncontrolled data versioning: datasets updated without traceability
* Poor data quality: missing values, outliers, or inconsistent sampling

)
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Preprocessing and feature engineering failures

* Incomplete documentation of preprocessing pipelines

* Implicit assumptions: about scaling, normalization, or data
alignment

* Non-deterministic feature generation (random splits,
augmentations)

* Temporal leakage via lookahead features

* Environment-dependent scripts (different library defaults or order
of operations)
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Model design and training failures

* Under-specified architectures: missing layer sizes, activation
functions, etc.

* Incomplete hyperparameter details (learning rate, optimizer,
batch size, etc.)

* Random initialization and nondeterministic training not controlled
by seeds

* Library and hardware differences (CPU vs GPU, parallelism)
* Selective reporting: only best runs reported, others omitted
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Hidden Pitfalls: Notebooks and Interactive
Workflows

o
* Notebooks (e.g., Jupyter, Colab) are powerful * gl
but risky for reproducibility: t
* Out-of-order execution can produce inconsistent jupyter
results
 Hidden state (variables from previous runs) ®

affects outcomes )
* Missing dependencies or local paths break o s
portability S
* Manual intervention prevents automation and *
version tracking

e Recommendations:

* Use notebooks for exploration, not final
experiments

* Convert to scripts or pipeline stages for
reproducible execution

X ®ioenzipynb e @Terminall  x D Consolel % | [HDataipynb @
» Code v ©  Pyinon 3 (pykeme O

The Lorenz Differential Equations
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Evaluation and validation failures

* Inconsistent data splits: unclear separation of training, validation,
and test sets

* Temporal leakage in cross-validation

* Non-standardized error metrics or misreported formulas

* Selective metric reporting (best horizons, specific subsets)
* Different evaluation horizons or aggregation rules

* Overfitting to benchmark datasets

IEEE
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Reporting and dissemination failures

* Incomplete documentation: missing code, data, or environment
details

* Unavailable trained models or scripts

* Unspecified software versions or dependencies

* Non-deterministic results reported without confidence intervals
* Insufficient methodological transparency in publications

IEEE
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Ensuring Reproducibility Across the
Forecasting Workflow

Reproducibility requires attention at every stage:

1. Data management

2. Preprocessing and feature engineering

3. Modeldesign and training

4. Evaluation and validation

5. Reporting and dissemination

Key principles:

* Traceability: record every step and change

* Determinism: control randomness and environments
* Transparency: share code, data, and decisions
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Data management solutions

* Use open, versioned datasets whenever possible

* Track dataset versions and metadata (e.g., timestamps, features,
sampling frequency)

* Apply data version control tools (e.g., DVC, Git-LFS)

* Store raw and processed data separately

* Document data sources, preprocessingrules, and exclusions
* Ensure consistent random splits across experiments

IEEE
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Preprocessing and Feature Engineering
Solutions

* Build deterministic preprocessing pipelines
* Fixrandom seeds for imputations or augmentations
* Avoid time-dependent leakage (respect causality)

* Use pipeline orchestration frameworks (e.g., DVC stages, scikit-
learn Pipeline)

* Record all preprocessing parameters in configuration files
* Keep feature engineering scripts versioned and modular
* Automate and log preprocessing steps for full reproducibility
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Model Design and Training Solutions

« Fix random seeds for initialization and v Seed
sampling v’ Config
* Ensure deterministic training (when v Env
possible) v’ versions
* Control GPU operations and parallelism -> at y series -~

the cost of slower training

* Record model configuration and
hyperparameters (YAML/JSON files) rseries -

* Use experiment tracking tools (e.g., MLflow,
Weights & Biases, DVC experiments)

* Version model code and weights

* Keep requirements.txt / environmentyml mptiaer | hddoniapers  ouputiaer
with library versions
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Evaluation and Validation Solutions

* Define clear and reproducible data splits (train, validation, test)
* Use time-aware backtesting or rolling windows for temporal data
* Document evaluation horizons and metric formulas

* Report all relevant metrics — not only the best-performing ones
* Use consistent benchmarks and protocols for fair comparison

* Log evaluation results with associated configurations

IEEE
e IV '
(ﬂ Consiglio Nazionale ;.Qii!',. Elt‘gtl:::r;ggsl QIEEE

delle Ricerche i =

)



he 51st Annual @onfzerence of: the IEEE

IncUstrpial Electronics Sociehy

Reporting and dissemination solutions

* Release code and data (or synthetic equivalents if sensitive)
* Use openrepositories (GitHub, Zenodo, Hugging Face, OSF)

* Include:
* Code, configuration, and data access instructions
* Details of software versions and dependencies
* Random seed and hardware info

* Consider reproducibility checklists and badges
* Write clear documentation for others to rerun experiments

)
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MLOps and Reproducibility

* MLOps (Machine Learning Operations) applies DevOps principles to
ML systems

* Goals: automation, traceability, reproducibility, and scalability

* Key MLOps components for reproducibility:
* Version control of data, code, and models
* Automated pipelines for training and deployment
* Experimenttracking and artifact storage
 Environment management (Docker, Conda, CI/CD)

* MLOps bridges research prototypes and production-grade forecasting
systems

)
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What is a pipeline?

* Apipelineis an organized sequence
of steps that transforms raw data

into final results - lj%l D3, (Inference &nsights T
, data collection > preprocessing =™ é :
% modeltralnlng > evaluation = - e e J— ==
reporting LSRR WP @ Oo
* Each stage has inputs, outputs, and = wcw e seme e s e
dependencies § - i -1
* Pipelines enable: g =—= %@ =
i p : Vviee :
* Automation of repetitive tasks SR e e
* Traceability of intermediate results
i ReprOd UCibility of the full workflow Source: https://suneeta-mall.github.io/blog/category/reproducible-ml/

)
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Version control with GIT

* Gittracks changes in code and text files

over time
* Enables collaboration, rollback, and B ]
branching - T ]
* Essential for reproducible research © e
because it:
* Records what changed, when, and by whom
« Links code versions to specific experiment o o
results
* Integrates with tools like GitHub, GitLab,
Bitbucket

Best practices:
« Commit often, use clear messages
* Tag releases correspondingto paper versions
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Data and model versioning with DVC

e DVC iData Version Control) extends Git to

handle large files, datasets, and ML
pipelines M

* Features:

* Version control for data, models, and scorina | | monitoring
experiments dveyaml

* Pipeline management: define dependencies [
between Stages .—I- Load Data _._|DCaIcuIate --L Train
* Experiment tracking with reproducible “ L i
parameters uric
* Remote storage integration (e.g., S3, Google paramsyami [—> %%
Drive, SSH) C

* Enables end-to-end reproducibility: every
output can be traced to the exact input data
and code

Model

Metrics &

I
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Tools for Python environment reproducibility

Common tools

* Managing dependencies is

essential for consistent Tool Key Feature Typical Use Case
Cross-language env .
re S u ltS * Conda manager; can fix Python & sRce:}iz;()’c(i::‘l{IcCIsl?c;iks
* Always freeze dependencies ZVS“"““ bs -
h [ ° b- . . l :
(environment.yml, Pipfile.lock, Pipeny  lookfile snaes Anpreve l
p 0O et ry. lO C k) consistency ependency contro
. Modern dependency & .
* Record environment hashes or Poetry packaging manager with ool ol
export with conda env export lockile ettt

or pip freeze
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Containerization: Docker and Dev Containers

* Docker packages code, dependencies,
and OS configuration into a portable
container

* Ensures consistent execution across
machines and platforms

 Dev Containers (VS Code feature)
simplify reproducible development
setups

* Benefits:
* Exactreplication of training environment
 Simplified deployment and sharing

* Integration with CI/CD and MLOps
pipelines
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Releasing code and data for a paper

* Publish yourresearch artifacts with
persistent identifiers

* Recommended steps:

Push final code to a public Git repository
(tagged version)

Archive it with Zenodo or similar service

Obtain a DOI (Digital Object Identifier)
for citation

Include data or metadata, environment
files, and documentation

Provide a full reproduction script to
regenerate all results, figures, and tables

Reference DOl in the paper and README
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Building a reproducible ecosystem

A reproducible ML-forecasting project integrates:
 Git + DVC - version control for code, data, and models

* Conda / Poetry / Pipenv - reproducible environments
* Docker / Dev Containers > portable execution
« Zenodo - archival and citation

 Automation pipelines (CI/CD, MLOps) - reliability and scalability
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Further reading

— Forecasting Research

* Boylan et al., Reproducibility in Forecasting Research, lJF, 2015.
e Makridakis et al., Objectivity, Reproducibility and Replicability in Forecasting Research, IJF, 2018.

Machine Learning & Standards

¢ Pineau et al., Improving Reproducibility in ML Research, NeurlPS Report, 2020.

e SEl Blog: The Myth of ML Non-Reproducibility and Randomness, CMU SElI, 2021.

* NeurlPS Reproducibility Checklist (neurips.cc/Conferences/2024/CallForPapers)
¢ AAAI Reproducibility Checklist (aaai.org/Conferences/AAAI-24/reproducibility)

Practical Tools & Guidelines

* Papers with Code — Releasing Research Code (gith m/ rswith )
e DVC Documentation (dvc.org/doc)
e Zenodo — Archive & DOI for research artifacts (zenodo.org)
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Hands-on Coding Examples

* The code of the examples is published at
https://github.com/giulatona/iecon2025_tutorial

* Follow along by clicking on the badge

Scan to open the repository
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