

The 51st Annual Conference of the IEEE Industrial Electronics Society

14-17 October 2025

Tutorial SESSION

DL-based forecasting of energy related time series: tuning,

evaluation, and reproducibility

Author's Name: Giuseppe La Tona

Affiliation: Institute of Marine Engineering (INM),

National Research Council (CNR), Italy

Author's Name: Christoph Bergmeir

Affiliation: Department of Computer Science and

Artificial Intelligence, University of Granada, Spain

Outline of the tutorial

Introduction to energy-related time series forecasting

ML and DL architectures for forecasting

Tuning of DL models for forecasting

Evaluation of forecasting results

Reproducibility of forecasting results

Hands-on coding examples

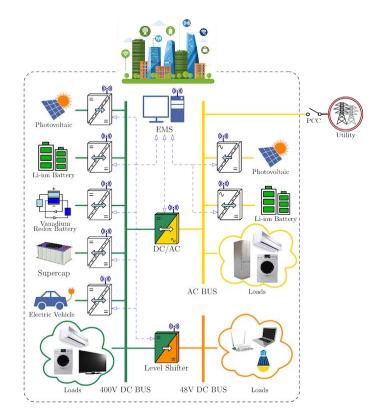
About me – Giuseppe La Tona

- •Researcher with the Institute for Marine Engineering (INM) Palermo branch, CNR
- •Ph.D. in Computer Engineering from the *University of Palermo*
- Senior Member, IEEE
- •Research focus: machine learning and optimization for energy systems
- •Main topics:
 - Energy management systems (EMSs)
 - Forecasting of energy-related time series
 - Optimization-based control for microgrids and renewable integration
- Contact info:
- •Email: giuseppe.latona@cnr.it
- •Website: www.giuseppelatona.com

Introduction and Definitions

Forecasting: a Key Enabler of the Energy Transition

- •The integration of **renewable energy sources** is accelerating the transition toward **low-carbon energy systems**.
- This shift increases variability, uncertainty, and operational complexity.
- •Accurate forecasting of renewable generation and electrical load is essential to:
 - Maintain grid stability and reliability
 - •Enable **smart operation** of energy communities and microgrids
 - Support planning and energy trading
- •Forecasts feed **Energy Management Systems** (**EMSs**) that coordinate renewable sources, storage, and loads to improve efficiency and reduce emissions.



Forecasting for Different Scales and Objectives

Transmission and Distribution Operators:

• Aggregate short-/medium-term forecasts for scheduling, unit commitment, and trading.

Microgrids and Buildings:

 Short-term load and PV forecasting for day-ahead scheduling and realtime control.

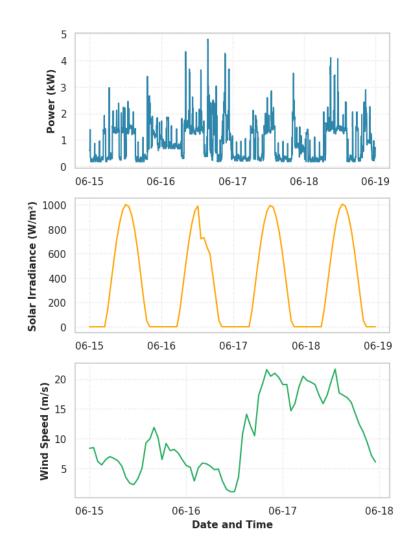
Emerging paradigms:

• Energy Communities and Smart Buildings rely on EMSs integrating local generation, storage, and flexible demand.

The 51st Annual Conference of the IEEE Industrial Electronics Society

Examples of Energy-Related Time Series

- **Electrical load demand** residential, commercial, or aggregated
- •PV and wind generation renewable output affected by weather
- Market prices reflecting supply– demand balance
- Environmental variables temperature, irradiance, wind speed



From forecasting needs to forecasting practice

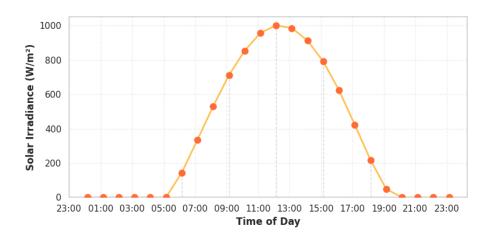
- The growing interest in machine learning and deep learning has brought remarkable advances in forecasting accuracy.
- However, challenges remain:
 - Inconsistent or inappropriate evaluation metrics
 - Data leakage and methodological errors in validation
 - Limited reproducibility of published results due to unavailable code or data
- These issues hinder both scientific progress and industrial adoption.
- This tutorial aims to share good practices, evaluation frameworks, and reproducible workflows for energy-related forecasting.

What is a time series?

- A **time series** is a set of data points indexed by time, typically sampled at **regular intervals**.
- It can be modeled as a **stochastic process**, i.e., a sequence of random variables

$$y_1, y_2, \dots, y_t$$

 Each observation depends on previous ones — capturing temporal dependence



What is forecasting?

• Forecasting aims to predict the value of the variable y_t given its past observations:

$$\hat{y}_{t+1} = f(y_t, \dots, y_1)$$

 Often, we want to predict several future steps — a forecasting horizon of length h

$$(\hat{y}_{t+1}, \dots, \hat{y}_{t+h}) = f(y_t, \dots, y_1)$$

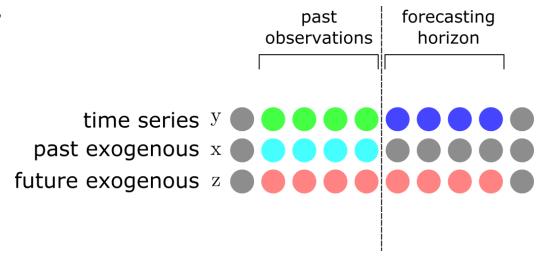
The function f is unknown and it must be learned from data

Univariate and Multivariate Time Series

- Univariate: each time step is a scalar y_t
 - Example: total power consumption
- Multivariate: each time step is a vector y_t
 - Example: consumption, PV generation, and temperature jointly
- Multivariate models can capture inter-variable dependencies.

Role of exogenous variables

- **Exogenous variables** (also called **explanatory variables**, or **covariates**) provide additional information influencing the target time series.
- Types of exogenous variables:
 - Past exogenous variables: known up to time t (e.g., past temperature, prices)
 - Future exogenous variables: known over the forecast horizon $t+1,\ldots,t+h$ (e.g., calendar features, scheduled tariffs, weather forecasts)
 - Static exogenous variables: variables that are static throughout the entire forecast horizon, e.g., building type, geographic location, or installed capacity
- Including exogenous inputs often improves model accuracy and robustness
- Modeling static covariates has become common with deep learning forecasting architectures



General forecasting model

In general, a forecasting model approximates the relationship between future values of the target series and all relevant inputs:

$$(\hat{y}_{t+1}, \dots, \hat{y}_{t+h}) = f(z_{t+h}, \dots, z_{t+1}, y_t, \dots, y_1, x_t, \dots, x_1, s)$$

- y target time series
- x past exogenous variables (time-varying)
- zfuture exogenous variables (time-varying, known over the forecast horizon)
- static covariates (covariates that are static throughout the entire forecast horizon)
- f the unknown function learned from data

Modern **deep learning architectures** learn flexible approximations of f directly from raw or minimally processed data.

IECON >> 2025

Single-step and multi-step forecasting

- **Single-step** forecasting: Predict only the next value of the time series
- Multi-step forecasting:
 Predict several future values
- Multi-step forecasts can be obtained by:
 - Recursive strategy: feed each prediction back as input
 - **Direct** strategy: train separate models for each horizon
 - Multi-output strategy: predict all future steps jointly

Forecasting horizons

- Horizon selection depends on:
 - Temporal resolution (e.g., hourly, daily)
 - System dynamics and decision timescale

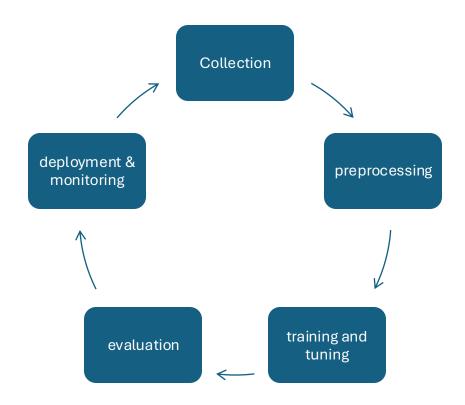
Horizon	Typical Range	Applications
Short-term	Minutes → days	Operation, dispatch, demand response, control
Medium-term	Weeks → months	Maintenance, resource planning, tariff design
Long-term	Months → years	Investment planning, capacity expansion, policy studies

Day-ahead forecasting

- A special case of short-term multi-step forecasting
- Forecasts the next 24 hours, typically with hourly or sub-hourly resolution
- Widely used in energy applications for:
 - Scheduling and dispatch of generation and storage
 - Energy trading in day-ahead markets
 - Demand response planning
- Often includes exogenous inputs such as weather forecasts and calendar effects

IECON >>> 2025

General forecasting pipeline



Data preprocessing

Typical preprocessing steps for energy-related time series:

- Data cleaning: handle missing values, outliers, and sensor errors
- Resampling: align data to a consistent temporal resolution
- Normalization / scaling: improve model convergence
- Detrending / deseasonalization: optional, depends on model type
- Feature engineering: create time-based features (hour, weekday), lags, rolling stats
- Documentation: record preprocessing decisions for reproducibility

© Good preprocessing ensures data quality, model stability, and reproducible results.

Summary and outlook

- We discussed the motivation: the energy transition increases variability and uncertainty, making forecasting essential for stable and efficient operation
- Defined time series, forecasting, and exogenous variables
- Introduced forecasting strategies (single-vs. multi-step) and horizons
- Outlined the forecasting workflow and data preprocessing steps
- Next: How to model forecasting functions f using ML and DL architectures

ML and DL architectures for forecasting

Christoph Bergmeir

Reproducibility

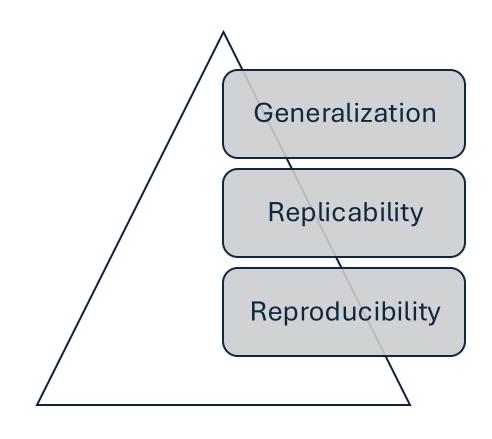
Why talk about reproducibility?

- Reproducibility is the foundation of scientific credibility
- Increases trust, transparency, and reliability of research
- Enables verification, comparison, and re-use of methods
- Critical for bridging academic results and industrial adoption
- In ML and forecasting, reproducibility ensures models can be replicated, validated, and improved

IECON >> 2025

Terminology

- Replicability:
 - Independent researchers obtain consistent results using new data and the same methods
- Reproducibility:
 - Independent researchers obtain the same results using the same data and methods
- Reproducibility is a necessary condition for replicability
- Without reproducibility, replication and thus scientific progress — is impossible



The broader reproducibility crisis

- Many scientific disciplines report low replication success rates
- Common issues:
 - Incomplete or ambiguous method descriptions
 - Data and code not shared
 - Hidden assumptions or software bugs
 - Randomness and uncontrolled computation environments
- Consequences:
 - Erosion of trust in published results
 - Difficulty building on prior work

Reproducibility in forecasting research

- Forecasting studies often lack complete methodological transparency
 - Insufficient detail in data preprocessing and parameter settings
 - Proprietary software or undocumented algorithms
 - Results that depend on specific datasets or random initializations
- Even when data are public, <u>methods are rarely reproducible</u> without direct author communication
- Reproducibility is essential for:
 - Fair model comparison
 - Reliable performance benchmarking
 - Cumulative progress in forecasting research

Reproducibility in Machine Learning

- ML experiments are computational, yet reproducibility remains a major challenge
- Frequent causes:
 - Under-specified model and training details
 - Uncontrolled randomness (initialization, sampling, parallelism)
 - Inconsistent metric definitions
 - Selective reporting of best results
 - Software version differences
- Reproducibility is not only about sharing code, but also sharing context and documentation

Reproducibility in ML-based forecasting

- Forecasting introduces additional temporal and methodological complexities:
 - Risk of data leakage (future data influencing training)
 - Dependence on preprocessing pipelines
 - Multiple forecast horizons and error metrics
 - Use of stochastic deep learning models
- Reliable forecasting research requires:
 - Transparent workflows
 - Controlled randomness
 - Reproducible data splits and evaluation procedures

IECON >> 2025

Sources of reproducibility failures

Reproducibility failures can occur at every stage of the forecasting workflow:

- 1. Data
- 2. Preprocessing
- 3. Model design & training
- 4. Evaluation
- 5. Reporting & dissemination

Data-related failures

Common problems:

- Unavailable or restricted data (privacy, licensing, proprietary datasets)
- Ambiguous data descriptions: unclear time ranges, units, or missing variables
- Data leakage: future information inadvertently used during training
- Uncontrolled data versioning: datasets updated without traceability
- Poor data quality: missing values, outliers, or inconsistent sampling

Preprocessing and feature engineering failures

- Incomplete documentation of preprocessing pipelines
- Implicit assumptions: about scaling, normalization, or data alignment
- Non-deterministic feature generation (random splits, augmentations)
- Temporal leakage via lookahead features
- Environment-dependent scripts (different library defaults or order of operations)

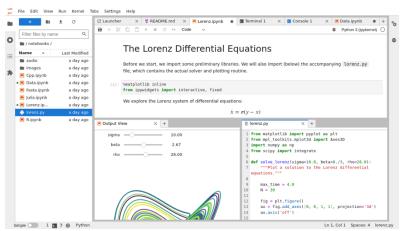
IECON >> 2025

Model design and training failures

- Under-specified architectures: missing layer sizes, activation functions, etc.
- Incomplete hyperparameter details (learning rate, optimizer, batch size, etc.)
- Random initialization and nondeterministic training not controlled by seeds
- Library and hardware differences (CPU vs GPU, parallelism)
- Selective reporting: only best runs reported, others omitted

Hidden Pitfalls: Notebooks and Interactive Workflows

- **Notebooks** (e.g., Jupyter, Colab) are powerful but risky for reproducibility:
 - Out-of-order execution can produce inconsistent results
 - Hidden state (variables from previous runs) affects outcomes
 - Missing dependencies or local paths break portability
 - Manual intervention prevents automation and version tracking
- Recommendations:
 - Use notebooks for exploration, not final experiments
 - Convert to scripts or pipeline stages for reproducible execution



IECON >> 2025

Evaluation and validation failures

- Inconsistent data splits: unclear separation of training, validation, and test sets
- Temporal leakage in cross-validation
- Non-standardized error metrics or misreported formulas
- Selective metric reporting (best horizons, specific subsets)
- Different evaluation horizons or aggregation rules
- Overfitting to benchmark datasets

Reporting and dissemination failures

- Incomplete documentation: missing code, data, or environment details
- Unavailable trained models or scripts
- Unspecified software versions or dependencies
- Non-deterministic results reported without confidence intervals
- Insufficient methodological transparency in publications

Ensuring Reproducibility Across the Forecasting Workflow

Reproducibility requires attention at every stage:

- 1. Data management
- Preprocessing and feature engineering
- 3. Model design and training
- 4. Evaluation and validation
- 5. Reporting and dissemination

Key principles:

- Traceability: record every step and change
- Determinism: control randomness and environments
- Transparency: share code, data, and decisions

IECON >> 2025

Data management solutions

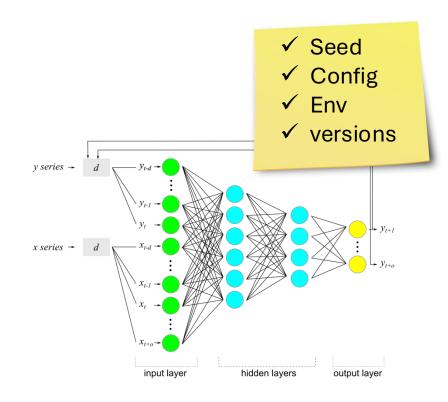
- Use open, versioned datasets whenever possible
- Track dataset versions and metadata (e.g., timestamps, features, sampling frequency)
- Apply data version control tools (e.g., DVC, Git-LFS)
- Store raw and processed data separately
- Document data sources, preprocessing rules, and exclusions
- Ensure consistent random splits across experiments

Preprocessing and Feature Engineering Solutions

- Build deterministic preprocessing pipelines
 - Fix random seeds for imputations or augmentations
 - Avoid time-dependent leakage (respect causality)
- Use pipeline orchestration frameworks (e.g., DVC stages, scikitlearn Pipeline)
- Record all preprocessing parameters in configuration files
- Keep feature engineering scripts versioned and modular
- Automate and log preprocessing steps for full reproducibility

Model Design and Training Solutions

- Fix random seeds for initialization and sampling
- Ensure deterministic training (when possible)
 - Control GPU operations and parallelism -> at the cost of slower training
- Record model configuration and hyperparameters (YAML/JSON files)
- Use experiment tracking tools (e.g., MLflow, Weights & Biases, DVC experiments)
- Version model code and weights
- Keep requirements.txt / environment.yml with library versions



Evaluation and Validation Solutions

- Define clear and reproducible data splits (train, validation, test)
- Use time-aware backtesting or rolling windows for temporal data
- Document evaluation horizons and metric formulas
- Report all relevant metrics not only the best-performing ones
- Use consistent benchmarks and protocols for fair comparison
- Log evaluation results with associated configurations

Reporting and dissemination solutions

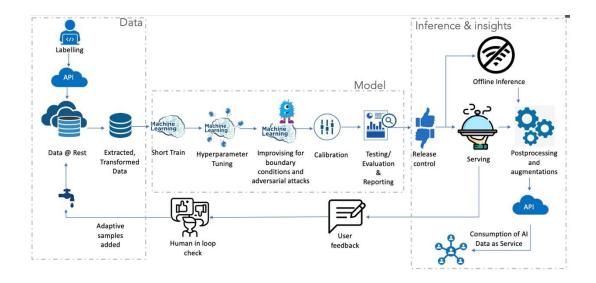
- Release code and data (or synthetic equivalents if sensitive)
- Use open repositories (GitHub, Zenodo, Hugging Face, OSF)
- Include:
 - Code, configuration, and data access instructions
 - Details of software versions and dependencies
 - Random seed and hardware info
- Consider reproducibility checklists and badges
- Write clear documentation for others to rerun experiments

MLOps and Reproducibility

- MLOps (Machine Learning Operations) applies DevOps principles to ML systems
- Goals: automation, traceability, reproducibility, and scalability
- Key MLOps components for reproducibility:
 - Version control of data, code, and models
 - Automated pipelines for training and deployment
 - Experiment tracking and artifact storage
 - Environment management (Docker, Conda, CI/CD)
- MLOps bridges research prototypes and production-grade forecasting systems

What is a pipeline?

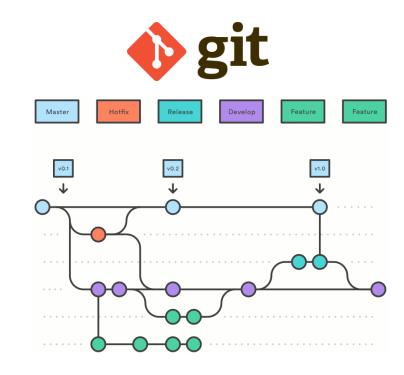
- A **pipeline** is an organized sequence of steps that transforms raw data into final results e.g., data collection → preprocessing → model training → evaluation → reporting
- Each stage has inputs, outputs, and dependencies
- Pipelines enable:
 - Automation of repetitive tasks
 - Traceability of intermediate results
 - **Reproducibility** of the full workflow



Source: https://suneeta-mall.github.io/blog/category/reproducible-ml/

Version control with GIT

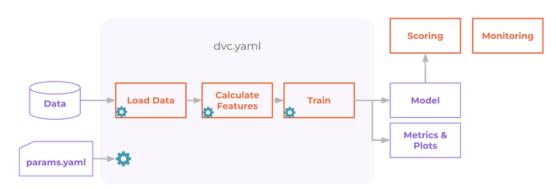
- Git tracks changes in code and text files over time
- Enables collaboration, rollback, and branching
- Essential for reproducible research because it:
 - Records what changed, when, and by whom
 - Links code versions to specific experiment results
 - Integrates with tools like GitHub, GitLab, Bitbucket
- Best practices:
 - Commit often, use clear messages
 - Tag releases corresponding to paper versions



Source: https://www.monolitonimbus.com.br/bitbucket-configuracao-e-branches/git_branches/CC BY-SA

Data and model versioning with DVC

- DVC (Data Version Control) extends Git to handle large files, datasets, and ML pipelines
- Features:
 - Version control for data, models, and experiments
 - Pipeline management: define dependencies between stages
 - Experiment tracking with reproducible parameters
 - Remote storage integration (e.g., S3, Google Drive, SSH)
- Enables end-to-end reproducibility: every output can be traced to the exact input data and code



Tools for Python environment reproducibility

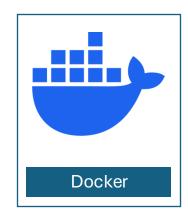
- Managing dependencies is essential for consistent results.
- Always freeze dependencies (environment.yml, Pipfile.lock, poetry.lock)
- Record environment hashes or export with conda env export or pip freeze

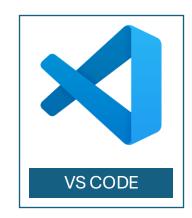
Common tools

Tool	Key Feature	Typical Use Case
Conda	Cross-language env manager; can fix Python & system libs	Reproducible scientific stacks
Pipenv	Combines pip & virtualenv, lockfile ensures consistency	App-level dependency control
Poetry	Modern dependency & packaging manager with lockfile	Reproducible ML projects, libraries

Containerization: Docker and Dev Containers

- Docker packages code, dependencies, and OS configuration into a portable container
- Ensures consistent execution across machines and platforms
- Dev Containers (VS Code feature) simplify reproducible development setups
- Benefits:
 - Exact replication of training environment
 - Simplified deployment and sharing
 - Integration with CI/CD and MLOps pipelines





Releasing code and data for a paper

- Publish your research artifacts with persistent identifiers
- Recommended steps:
 - Push final code to a public Git repository (tagged version)
 - Archive it with Zenodo or similar service
 - Obtain a DOI (Digital Object Identifier) for citation
 - Include data or metadata, environment files, and documentation
 - Provide a full reproduction script to regenerate all results, figures, and tables
 - Reference DOI in the paper and README

GitHub

Zenodo

doi.org

IECON >>> 2025

Building a reproducible ecosystem

A reproducible ML-forecasting project integrates:

- Git + DVC → version control for code, data, and models
- Conda / Poetry / Pipenv → reproducible environments
- Docker / Dev Containers → portable execution
- Zenodo → archival and citation
- Automation pipelines (CI/CD, MLOps) → reliability and scalability

The 51st Annual Conference of the IEEE Industrial Electronics Society

Further reading

- Forecasting Research
 - Boylan et al., Reproducibility in Forecasting Research, IJF, 2015.
 - Makridakis et al., Objectivity, Reproducibility and Replicability in Forecasting Research, IJF, 2018.
- Machine Learning & Standards
 - Pineau et al., Improving Reproducibility in ML Research, NeurIPS Report, 2020.
 - SEI Blog: The Myth of ML Non-Reproducibility and Randomness, CMU SEI, 2021.
 - NeurIPS Reproducibility Checklist (neurips.cc/Conferences/2024/CallForPapers)
 - AAAI Reproducibility Checklist (aaai.org/Conferences/AAAI-24/reproducibility)
- Practical Tools & Guidelines
 - Papers with Code Releasing Research Code (github.com/paperswithcode)
 - DVC Documentation (dvc.org/doc)
 - Zenodo Archive & DOI for research artifacts (zenodo.org)

IECON >>> 2025

Hands-on Coding Examples

- The code of the examples is published at https://github.com/giulatona/iecon2025_tutorial
- Follow along by clicking on the badge

Scan to open the repository

The 51st Annual Conference of the IEEE Industrial Electronics Society

