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Outline of the tutorial

Introduction to energy-related time series forecasting

ML and DL architectures for forecasting

Tuning of DL models for forecasting 

Evaluation of forecasting results

Reproducibility of forecasting results

Hands-on coding examples
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•Energy management systems (EMSs)
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Introduction and Definitions



Forecasting: a Key Enabler of the Energy Transition

•The integration of renewable energy sources is 
accelerating the transition toward low-carbon energy 
systems.
•This shift increases variability, uncertainty, 
and operational complexity.
•Accurate forecasting of renewable generation and 
electrical load is essential to:

•Maintain grid stability and reliability
•Enable smart operation of energy communities and 
microgrids
•Support planning and energy trading

•Forecasts feed Energy Management Systems 
(EMSs) that coordinate renewable sources, storage, and 
loads to improve efficiency and reduce emissions.

 
 Fig. 2 – The proposed energy efficient building nanogrid architecture.

  
 
WP2: Subsystems for energy storage and power conversion 

 T2.1 – Energy storage elements: modelling, power converters with WBG devices, diagnostics, advanced
control

 The most competitive energy storage technologies for stationary applications are considered to be lithium-ion for
power quality services (possibly including supercapacitor for fast varying loads) and flow batteries for long-
duration energy management. They can be hybridized so as to exploit their complementary advantages. The
project will consider all of them also with a focus on the vanadium redox flow battery (VRFB), taking the
opportunity of a fully instrumented industrial-scale (9 kW – 26 kWh) VRFB test facility available and in operation
at the University of Padova (DII) . This task is also aimed at the definition of the energy storage modelling and
interaction with system management strategy. Models will be used in the supervising system in order to
maximize the storage lifetime and round-trip efficiency, reducing the cost of the managed energy. As an example,
in the case of closed lithium batteries, the focus will be on the maximum charge/discharge current, depth of
discharge (DOD), and balance of the series/parallel connected cells. The health state evolution as a function of the
number of charge/discharge cycles will also be studied. Online monitoring, diagnostic and prognostic features
allowing the estimation of the battery SoC and SoH will be developed based on a time domain model-based
approach. Finally, as far as the interface converters are concerned, galvanically isolated, high-efficiency
bidirectional topologies with SiC/GaN devices will be investigated. The DC/DC converter operation will be
augmented by additional functions aimed at the online estimation of the energy storage SoC and SoH. 

 



Forecasting for Different Scales and Objectives

• Transmission and Distribution Operators:
• Aggregate short-/medium-term forecasts for scheduling, unit 

commitment, and trading.

• Microgrids and Buildings:
• Short-term load and PV forecasting for day-ahead scheduling and real-

time control.

• Emerging paradigms:
• Energy Communities and Smart Buildings rely on EMSs integrating local 

generation, storage, and flexible demand.



Examples of Energy-
Related Time Series
•Electrical load demand – residential, 
commercial, or aggregated
•PV and wind generation – renewable 
output affected by weather
•Market prices – reflecting supply–
demand balance
•Environmental variables – temperature, 
irradiance, wind speed



From forecasting needs to forecasting 
practice
• The growing interest in machine learning and deep learning has brought 

remarkable advances in forecasting accuracy.
• However, challenges remain:

• Inconsistent or inappropriate evaluation metrics
• Data leakage and methodological errors in validation
• Limited reproducibility of published results due to unavailable code or data

• These issues hinder both scientific progress and industrial adoption.
• This tutorial aims to share good practices, evaluation frameworks, and 

reproducible workflows for energy-related forecasting.



What is a time series?
• A time series is a set of data points 

indexed by time, typically sampled at 
regular intervals.

• It can be modeled as a stochastic 
process, i.e., a sequence of random 
variables

𝑦1, 𝑦2, … , 𝑦𝑡
• Each observation depends on 

previous ones — capturing temporal 
dependence



What is forecasting?

• Forecasting aims to predict the value of the variable yt given its 
past observations:

ො𝑦𝑡+1 = 𝑓(𝑦𝑡 , … , 𝑦1)

• Often, we want to predict several future steps — a forecasting 
horizon of length h

( ො𝑦𝑡+1, … , ො𝑦𝑡+ℎ) = 𝑓(𝑦𝑡 , … , 𝑦1)

• The function f is unknown and it must be learned from data



Univariate and Multivariate Time Series

• Univariate: each time step is a scalar yt
• Example: total power consumption

• Multivariate: each time step is a vector yt
• Example: consumption, PV generation, and temperature jointly

• Multivariate models can capture inter-variable dependencies.



Role of exogenous variables
• Exogenous variables (also called explanatory 

variables, or covariates) provide additional 
information influencing the target time series.

• Types of exogenous variables:
• Past exogenous variables: known up to time t (e.g., 

past temperature, prices)
• Future exogenous variables: known over the 

forecast horizon 𝑡 + 1,… , 𝑡 + ℎ (e.g., calendar 
features, scheduled tariffs, weather forecasts)

• Static exogenous variables: variables that are 
static throughout the entire forecast horizon, e.g., 
building type, geographic location, or installed 
capacity

• Including exogenous inputs often improves 
model accuracy and robustness

• Modeling static covariates has become 
common with deep learning forecasting 
architectures



General forecasting model

In general, a forecasting model approximates the relationship between future values 
of the target series and all relevant inputs:

ො𝑦𝑡+1, … , ො𝑦𝑡+ℎ = 𝑓(𝒛𝒕+𝒉, … , 𝒛𝒕+𝟏, 𝑦𝑡 , … , 𝑦1, 𝒙𝒕, … , 𝒙𝟏, 𝐬)

• y target time series
• x past exogenous variables (time-varying)
• z future exogenous variables (time-varying, known over the forecast horizon)
• s static covariates (covariates that are static throughout the entire forecast horizon)
• f the unknown function learned from data
Modern deep learning architectures learn flexible approximations of f directly from 
raw or minimally processed data.



Single-step and multi-step forecasting

• Single-step forecasting:
Predict only the next value of the time series

• Multi-step forecasting:
Predict several future values

• Multi-step forecasts can be obtained by:
• Recursive strategy: feed each prediction back as input
• Direct strategy: train separate models for each horizon
• Multi-output strategy: predict all future steps jointly



Forecasting horizons

• Horizon selection depends on:
• Temporal resolution (e.g., hourly, 

daily)
• System dynamics and decision 

timescale

Horizon Typical Range Applications

Short-term Minutes → days
Operation, dispatch, 
demand response, 
control

Medium-term Weeks → months
Maintenance, 
resource planning, 
tariff design

Long-term Months → years

Investment 
planning, capacity 
expansion, policy 
studies



Day-ahead forecasting

• A special case of short-term multi-step forecasting
• Forecasts the next 24 hours, typically with hourly or sub-hourly 

resolution
• Widely used in energy applications for:

• Scheduling and dispatch of generation and storage
• Energy trading in day-ahead markets
• Demand response planning

• Often includes exogenous inputs such as weather forecasts and 
calendar effects



General forecasting pipeline

Collection

preprocessing

training and 
tuningevaluation

deployment & 
monitoring



Data preprocessing
Typical preprocessing steps for energy-related time series:
• Data cleaning: handle missing values, outliers, and sensor errors
• Resampling: align data to a consistent temporal resolution
• Normalization / scaling: improve model convergence
• Detrending / deseasonalization: optional, depends on model type
• Feature engineering: create time-based features (hour, weekday), lags, rolling 

stats
• Documentation: record preprocessing decisions for reproducibility

Good preprocessing ensures data quality, model stability, and reproducible 
results.



Summary and outlook

• We discussed the motivation: the energy transition increases 
variability and uncertainty, making forecasting essential for stable and 
efficient operation

• Defined time series, forecasting, and exogenous variables
• Introduced forecasting strategies (single- vs. multi-step) and horizons
• Outlined the forecasting workflow and data preprocessing steps
• Next: How to model forecasting functions f using ML and DL 

architectures



ML and DL architectures for forecasting

Christoph Bergmeir



Reproducibility



Why talk about reproducibility?

• Reproducibility is the foundation of scientific credibility
• Increases trust, transparency, and reliability of research
• Enables verification, comparison, and re-use of methods
• Critical for bridging academic results and industrial adoption
• In ML and forecasting, reproducibility ensures models can be 

replicated, validated, and improved



Terminology

• Replicability:
• Independent researchers obtain 

consistent results using new data and the 
same methods

• Reproducibility:
• Independent researchers obtain the 

same results using the same data and 
methods

• Reproducibility is a necessary 
condition for replicability

• Without reproducibility, replication —
and thus scientific progress — is 
impossible

Generalization

Replicability 

Reproducibility



The broader reproducibility crisis

• Many scientific disciplines report low replication success rates
• Common issues:

• Incomplete or ambiguous method descriptions
• Data and code not shared
• Hidden assumptions or software bugs
• Randomness and uncontrolled computation environments

• Consequences:
• Erosion of trust in published results
• Difficulty building on prior work



Reproducibility in forecasting research

• Forecasting studies often lack complete methodological transparency
• Insufficient detail in data preprocessing and parameter settings
• Proprietary software or undocumented algorithms
• Results that depend on specific datasets or random initializations

• Even when data are public, methods are rarely reproducible without 
direct author communication

• Reproducibility is essential for:
• Fair model comparison
• Reliable performance benchmarking
• Cumulative progress in forecasting research



Reproducibility in Machine Learning

• ML experiments are computational, yet reproducibility remains a major 
challenge

• Frequent causes:
• Under-specified model and training details
• Uncontrolled randomness (initialization, sampling, parallelism)
• Inconsistent metric definitions
• Selective reporting of best results
• Software version differences

• Reproducibility is not only about sharing code, but also sharing context 
and documentation



Reproducibility in ML-based forecasting

• Forecasting introduces additional temporal and methodological 
complexities:
• Risk of data leakage (future data influencing training)
• Dependence on preprocessing pipelines
• Multiple forecast horizons and error metrics
• Use of stochastic deep learning models

• Reliable forecasting research requires:
• Transparent workflows
• Controlled randomness
• Reproducible data splits and evaluation procedures



Sources of reproducibility failures

Reproducibility failures can occur at every stage of the forecasting 
workflow:
1. Data
2. Preprocessing
3. Model design & training
4. Evaluation
5. Reporting & dissemination



Data-related failures

Common problems:
• Unavailable or restricted data (privacy, licensing, proprietary datasets)
• Ambiguous data descriptions: unclear time ranges, units, or missing 

variables
• Data leakage: future information inadvertently used during training
• Uncontrolled data versioning: datasets updated without traceability
• Poor data quality: missing values, outliers, or inconsistent sampling



Preprocessing and feature engineering failures

• Incomplete documentation of preprocessing pipelines
• Implicit assumptions: about scaling, normalization, or data 

alignment
• Non-deterministic feature generation (random splits, 

augmentations)
• Temporal leakage via lookahead features
• Environment-dependent scripts (different library defaults or order 

of operations)



Model design and training failures

• Under-specified architectures: missing layer sizes, activation 
functions, etc.

• Incomplete hyperparameter details (learning rate, optimizer, 
batch size, etc.)

• Random initialization and nondeterministic training not controlled 
by seeds

• Library and hardware differences (CPU vs GPU, parallelism)
• Selective reporting: only best runs reported, others omitted



Hidden Pitfalls: Notebooks and Interactive 
Workflows
• Notebooks (e.g., Jupyter, Colab) are powerful 

but risky for reproducibility:
• Out-of-order execution can produce inconsistent 

results
• Hidden state (variables from previous runs) 

affects outcomes
• Missing dependencies or local paths break 

portability
• Manual intervention prevents automation and 

version tracking
• Recommendations:

• Use notebooks for exploration, not final 
experiments

• Convert to scripts or pipeline stages for 
reproducible execution



Evaluation and validation failures

• Inconsistent data splits: unclear separation of training, validation, 
and test sets

• Temporal leakage in cross-validation
• Non-standardized error metrics or misreported formulas
• Selective metric reporting (best horizons, specific subsets)
• Different evaluation horizons or aggregation rules
• Overfitting to benchmark datasets



Reporting and dissemination failures

• Incomplete documentation: missing code, data, or environment 
details

• Unavailable trained models or scripts
• Unspecified software versions or dependencies
• Non-deterministic results reported without confidence intervals
• Insufficient methodological transparency in publications



Ensuring Reproducibility Across the 
Forecasting Workflow
Reproducibility requires attention at every stage:
1. Data management
2. Preprocessing and feature engineering
3. Model design and training
4. Evaluation and validation
5. Reporting and dissemination
Key principles:
• Traceability: record every step and change
• Determinism: control randomness and environments
• Transparency: share code, data, and decisions



Data management solutions

• Use open, versioned datasets whenever possible
• Track dataset versions and metadata (e.g., timestamps, features, 

sampling frequency)
• Apply data version control tools (e.g., DVC, Git-LFS)
• Store raw and processed data separately
• Document data sources, preprocessing rules, and exclusions
• Ensure consistent random splits across experiments



Preprocessing and Feature Engineering 
Solutions
• Build deterministic preprocessing pipelines

• Fix random seeds for imputations or augmentations
• Avoid time-dependent leakage (respect causality)

• Use pipeline orchestration frameworks (e.g., DVC stages, scikit-
learn Pipeline)

• Record all preprocessing parameters in configuration files
• Keep feature engineering scripts versioned and modular
• Automate and log preprocessing steps for full reproducibility



Model Design and Training Solutions

• Fix random seeds for initialization and 
sampling

• Ensure deterministic training (when 
possible) 
• Control GPU operations and parallelism -> at 

the cost of slower training
• Record model configuration and 

hyperparameters (YAML/JSON files)
• Use experiment tracking tools (e.g., MLflow, 

Weights & Biases, DVC experiments)
• Version model code and weights
• Keep requirements.txt / environment.yml

with library versions

✓ Seed 
✓ Config
✓ Env
✓ versions



Evaluation and Validation Solutions

• Define clear and reproducible data splits (train, validation, test)
• Use time-aware backtesting or rolling windows for temporal data
• Document evaluation horizons and metric formulas
• Report all relevant metrics — not only the best-performing ones
• Use consistent benchmarks and protocols for fair comparison
• Log evaluation results with associated configurations



Reporting and dissemination solutions

• Release code and data (or synthetic equivalents if sensitive)
• Use open repositories (GitHub, Zenodo, Hugging Face, OSF)
• Include:

• Code, configuration, and data access instructions
• Details of software versions and dependencies
• Random seed and hardware info

• Consider reproducibility checklists and badges
• Write clear documentation for others to rerun experiments



MLOps and Reproducibility

• MLOps (Machine Learning Operations) applies DevOps principles to 
ML systems

• Goals: automation, traceability, reproducibility, and scalability
• Key MLOps components for reproducibility:

• Version control of data, code, and models
• Automated pipelines for training and deployment
• Experiment tracking and artifact storage
• Environment management (Docker, Conda, CI/CD)

• MLOps bridges research prototypes and production-grade forecasting 
systems



What is a pipeline?

• A pipeline is an organized sequence 
of steps that transforms raw data 
into final results
e.g., data collection → preprocessing 
→ model training → evaluation → 
reporting

• Each stage has inputs, outputs, and 
dependencies

• Pipelines enable:
• Automation of repetitive tasks
• Traceability of intermediate results
• Reproducibility of the full workflow Source: https://suneeta-mall.github.io/blog/category/reproducible-ml/



Version control with GIT

• Git tracks changes in code and text files 
over time

• Enables collaboration, rollback, and 
branching

• Essential for reproducible research 
because it:
• Records what changed, when, and by whom
• Links code versions to specific experiment 

results
• Integrates with tools like GitHub, GitLab, 

Bitbucket
• Best practices:

• Commit often, use clear messages
• Tag releases corresponding to paper versions

Source: https://www.monolitonimbus.com.br/bitbucket-configuracao-e-branches/git_branches/
CC BY-SA

https://www.monolitonimbus.com.br/bitbucket-configuracao-e-branches/git_branches/
https://www.monolitonimbus.com.br/bitbucket-configuracao-e-branches/git_branches/
https://www.monolitonimbus.com.br/bitbucket-configuracao-e-branches/git_branches/
https://www.monolitonimbus.com.br/bitbucket-configuracao-e-branches/git_branches/
https://www.monolitonimbus.com.br/bitbucket-configuracao-e-branches/git_branches/
https://www.monolitonimbus.com.br/bitbucket-configuracao-e-branches/git_branches/
https://www.monolitonimbus.com.br/bitbucket-configuracao-e-branches/git_branches/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/


Data and model versioning with DVC

• DVC (Data Version Control) extends Git to 
handle large files, datasets, and ML 
pipelines

• Features:
• Version control for data, models, and 

experiments
• Pipeline management: define dependencies 

between stages
• Experiment tracking with reproducible 

parameters
• Remote storage integration (e.g., S3, Google 

Drive, SSH)
• Enables end-to-end reproducibility: every 

output can be traced to the exact input data 
and code



Tools for Python environment reproducibility

• Managing dependencies is 
essential for consistent 
results.

• Always freeze dependencies 
(environment.yml, Pipfile.lock, 
poetry.lock)

• Record environment hashes or 
export with conda env export 
or pip freeze

Tool Key Feature Typical Use Case

Conda
Cross-language env
manager; can fix Python & 
system libs

Reproducible 
scientific stacks

Pipenv
Combines pip & virtualenv, 
lockfile ensures
consistency

App-level 
dependency control

Poetry
Modern dependency & 
packaging manager with 
lockfile

Reproducible ML 
projects, libraries

Common tools



Containerization: Docker and Dev Containers

• Docker packages code, dependencies, 
and OS configuration into a portable 
container

• Ensures consistent execution across 
machines and platforms

• Dev Containers (VS Code feature) 
simplify reproducible development 
setups

• Benefits:
• Exact replication of training environment
• Simplified deployment and sharing
• Integration with CI/CD and MLOps

pipelines

Docker VS CODE Dev Containers



Releasing code and data for a paper

• Publish your research artifacts with 
persistent identifiers

• Recommended steps:
• Push final code to a public Git repository 

(tagged version)
• Archive it with Zenodo or similar service
• Obtain a DOI (Digital Object Identifier)

for citation
• Include data or metadata, environment 

files, and documentation
• Provide a full reproduction script to 

regenerate all results, figures, and tables
• Reference DOI in the paper and README

GitHub Zenodo

doi.org



Building a reproducible ecosystem

A reproducible ML-forecasting project integrates:
• Git + DVC → version control for code, data, and models
• Conda / Poetry / Pipenv → reproducible environments
• Docker / Dev Containers → portable execution
• Zenodo → archival and citation
• Automation pipelines (CI/CD, MLOps) → reliability and scalability



Further reading

github.com/paperswithcode

Forecasting Research

• Boylan et al., Reproducibility in Forecasting Research, IJF, 2015.
• Makridakis et al., Objectivity, Reproducibility and Replicability in Forecasting Research, IJF, 2018.

Machine Learning & Standards

• Pineau et al., Improving Reproducibility in ML Research, NeurIPS Report, 2020.
• SEI Blog: The Myth of ML Non-Reproducibility and Randomness, CMU SEI, 2021.
• NeurIPS Reproducibility Checklist (neurips.cc/Conferences/2024/CallForPapers)
• AAAI Reproducibility Checklist (aaai.org/Conferences/AAAI-24/reproducibility)

Practical Tools & Guidelines

• Papers with Code – Releasing Research Code (github.com/paperswithcode)
• DVC Documentation (dvc.org/doc)
• Zenodo – Archive & DOI for research artifacts (zenodo.org)

https://github.com/paperswithcode/releasing-research-code


Hands-on Coding Examples 

• The code of the examples is published at 
https://github.com/giulatona/iecon2025_tutorial

• Follow along by clicking on the badge 

Scan to open the repository

https://github.com/giulatona/iecon2025_tutorial


Motivation

Appl. Sci. 2019, 9, 2120 6 of 19

type, which generated in real time the references for the power flows among the system components:

loads, renewable generators, and battery storage systems. Furthermore, a series of previously devised

wireless sensors [38] was connected to the electric appliances to send measured data to the EMSand to

forward the power references set by theEMSto the power electronic converters that interface system

components. Thewireless sensors communicated using Message Queue Telemetry Transport (MQTT),

a lightweight messaging protocol for the IoT based on the publish-subscribe paradigm. A pictorial

view of each smart home is shown in Figure 2.

The four users (A÷ D) had different habits, hence different load profiles. Themain parameters of

the system under study are shown in Table 1, and the following working assumptions weremade:

1. The aggregated load profile is considered as an input; if needed, a lower-level control system can

shift or schedule each load, while respecting the aggregated load profile.

2. Themaximum contractual power for Users A and C is 3 kW, whereas for Users B and D it is 4 kW.

3. Each user has only one renewable generator; in particular, Users A and B have PV generators,

whereasUsers C and D havemicro Wind Energy Conversion Systems (µWECSs).

4. The renewable generators are always operated in the maximum power point for each

environmental condition (wind speed, solar irradiance, and temperature) since they are usually

equipped with maximum power point trackers (MPPT).

5. Transferring power from the battery to the grid is not allowed by the utility, according to the

technical rule for grid-connection in force in someEuropean countries at the time of writing.

6. The battery must be small and affordable for the end user, thus it is not suitable to sustain

hours-long islanding; the considered capacity values for each user are given in Table 1.

Figure 2. Pictorial view of the smart home under study.

Such working assumptions did not affect the general validity of the proposed EMS. With regard

to Points 1 and 4, even if slight deviations occurred (e.g., the lower-level control system does not

precisely respect the aggregated load profile or the renewable generator does not work exactly in its

maximum power point), they were seen as forecasting errors. Hence, using the battery as an energy

buffer, they were effectively corrected by the Online Replanning stage of the EMS, as happens for

errors due to unexpected weather fluctuations [42]. As for Point 3, in the presence of more than one

renewable generator, their power profiles could be aggregated following the same approach used for

loads. However, this scenario is highly unusual in the smart home context because it would be very

expensive. Finally, with regard to Point 6, the influence of battery size on the EMSperformance has

been already studied in [42], where a sensitivity analysis has been performed.
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